Install Quarto for Julia

Darren Irwin

2023-05-13

These are notes on how I set up Quarto for use with Julia. I am taking these notes both to try
out Quarto and to record the steps involved. I hope this will be of use for myself, students,
and maybe others.

I am assuming some basic familiarity with Julia and Visual Studio Code (i.e., VS
Code). If you don’t yet have VS Code installed, you can download and install it from
https://code.visualstudio.com . If you don’t yet have the Julia extension for VS Code, follow
the instructions here: https://code.visualstudio.com/docs/languages/julia . (Another option
is to use some other text editor, but I highly recommend VS Code and assume it below.)

The following is for MacOS:

First, I got set up with Juliaup and the newest version of Julia:

Install Juliaup (Julia version manager)

First, install Juliaup using this command in the Terminal:
curl -fsSL https://install. julialang.org | sh

Pay close attention, as Juliaup might ask you to run a command to add Juliaup to your Path.
Do as it says. Then open a new terminal window. You can then check whether you have
installed Julia versions using;:

juliaup status

If you have no Julia version yet, or do have a version but want to upgrade to the latest, get
the latest release version using;:

juliaup update release

At the time of writing this (updated Sept. 2023), the latest version of Julia is 1.9.3. The
version installed on my machine is 1.9.3+0.x64.apple.darwinl4.

https://code.visualstudio.com/docs/languages/julia

If you also want an older version as an option, you can install it using something like juliaup
add 1.8.5. (Not needed for most users, since newer versions of Julia run older code.)

Install Quarto (and dependencies)

This is a somewhat lengthy process, because running Quarto relies on several other software
packages, including Jupyter and iJulia. But the results are worth it!

I learned much of the below from: https://quarto.org/docs/computations/julia.html

Download and install Quarto from this site: https://quarto.org/docs/get-started/ . The ver-
sion I have installed is Quarto CLI 1.3.450 (Mac 0S).

Install the Quarto extension for VS Code (using the standard way of choosing extensions in
VS Code).

1Julia

This is a Julia package that is needed to render your Quarto files. To install, start a Julia
REPL either in VS Code (using View > Command Palette > Julia: Start REPL) or in a
terminal window by typing Julia. Then type these commands:

using Pkg
Pkg.add("IJulia")

This takes a couple minutes to install, with all the dependencies.

Jupyter

Jupyter notebooks can be used with Julia, Python, and R (and the name is sort of a com-
bination of those). Quarto uses Jupyter as an intermediate step in processing the code into
output. To install Jupyter, we simply need to call an IJulia command (see below) and this will
trigger a prompt asking you whether to install Jupyter. Say yes (unless perhaps you already
have Jupyter installed).

using IJulia
notebook ()

Then the computer will ask install Jupyter via Conda, y/n? to which you can respond “y”.

After some processing, a Jupyter browser window will open. You then need to click the “Quit”
button (in the upper right) to quit Jupyter, and the Julia prompt returns in the REPL (if you
are having trouble with that, you can enter ctrl-C in the Julia REPL, and you should see the

https://quarto.org/docs/computations/julia.html
https://quarto.org/docs/get-started/

julia prompt). After this initializing of Jupyter, you don’t need to open Jupyter in this way
again (Quarto will simply use Jupyter directly).

Revise.jl
This package enables Quarto to interact more efficiently with Julia when you change code. In

a Julia REPL, type:

using Pkg
Pkg.add("Revise")

To set up Revise to launch automatically within IJulia, create a text file containing the fol-
lowing:

try

@eval using Revise
catch e

@warn "Revise init" exception=(e, catch_backtrace())
end

Save the above file as .julia/config/startup_ijulia.jl (the dot at the start means this di-
rectory is hidden—the computer will probably ask you to confirm that you want to do this).
If you are new to creating text files in hidden folders, try this: In a terminal window, type
cd ~ to make sure you are in your home directory, then type cd .julia, then 1s and check if
a config folder is listed. If not, type mkdir config. Then type cd config. Then, type nano
startup_ijulia.jl . A text editor will open, then copy and paste the above code into the
editor. Then type ctrl-X and then Y and then return. The file should be saved, which you
can confirm by typing 1s and seeing it listed there.

Jupyter-cache

This enables smart and efficient re-execution of parts of your code (only the parts dependent
on changes you've made). In the Julia REPL, execute:

using Pkg

Pkg.add("Conda")

using Conda

Conda.add(" jupyter-cache™)

Almost there!

After the above, Quarto is essentially installed and should work well for rendering in HTML
or DOCX. However, I found a few more things are needed for a satisfying experience rendering
in PDF.

If you don’t have it yet, you will need to first install the Homebrew package manager for
macOS or Linux (see https://brew.sh). Run this in a Terminal window:

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
If that worked, take a break and grab a beverage of your choice.

Now, run the following in a Terminal window:

librsvg and BasicTeX
brew install librsvg homebrew/cask/basictex

This will ask for your Administrator password, and takes some time to download and install.
If you get an error saying “No developer tools installed, then follow the instructions to do so
(for me, it was running the command xcode-select --install .)

TinyTeX

curl -sL "https://yihui.org/tinytex/install-bin-unix.sh" | sh

JuliaMono font

This font works well with monocode symbols used in Julia (without it, many of these symbols
were missing from PDF output).

brew tap homebrew/cask-fonts
brew install --cask font-juliamono

(If you want to set JuliaMono as your editor font in VS Code, then do this: click on the gear
symbol in the lower left, choose Settings, then choose “Editor: Font Family” and replace what
is there with “JuliaMono”. You might need to restart VS Code for the change to take effect.
A good way to check is to see if the zero symbol now has a little dot in the middle.)

Try a demo Quarto file

OK we are now ready to do a little prayer to the Quarto and Julia gods and try this all out.
In VS Code make a new file called QuartoDemo.gmd. The .gmd ending is important as it tells
VS Code this is a Quarto file. Put all of this in the file:

title: "Demo Quarto File"
author: "Darren Irwin"
date: "5/13/2023"
execute:
echo: true
format:
html:
code-fold: true
pdf:
keep-tex: true
monofont: "JuliaMono"
jupyter: julia-1.9

Demo plot produced by Julia in Quarto

Plot function pair (x(u), y(u)).
See @fig-parametric for an example.

Unicode test: “a R °
(To get those symbols in Julia REPL, type \\alpha then tab, or \\beta then tab)

Y julia}
#| label: fig-parametric
#| fig-cap: "Parametric Plots"

using Plots

plot(sin,
x—=>sin(2x),
0,
2m,
leg=false,
fill=(0,:lavender))

AVAWAY

Now, click Preview in the upper right of your VS Code window. The resulting html version
of your document may appear as a preview to the right, and the html file is automatically
saved. Then try the Render PDF command (in the Command Pallette, which you open with
shift-command-P) for a PDF. (Check the unicode symbols carefully to see if they are there. I
think they should be if the above installations were done.)

The rendered document should display the output shown below.

Demo plot produced by Julia in Quarto

Plot function pair (x(u), y(u)). See Figure 1 for an example.

Unicode test: @ B (To get those in Julia REPL, type \alpha then tab, or \beta then tab)
using Plots

plot(sin,
x—=>sin(2x),
0,
2m,
leg=false,
fill=(0,:lavender))

0.5 r

0.0 -

-0.5

-1.0 ! ! ! !
-1.0 -0.5 0.0 0.5 1.0

Figure 1: Parametric Plots

The code for the example plot above came from the Quarto website: https://quarto.org/docs/
computations/julia.html

Comment added Sept. 9: After I updated some software, the render wasn’t working, saying
it couldn’t find the Jupyter kernel for Julia-1.9. I fixed this by reinstalling Jupyter, using the
terminal command pip3 install jupyter .

https://quarto.org/docs/computations/julia.html
https://quarto.org/docs/computations/julia.html

	Install Juliaup (Julia version manager)
	Install Quarto (and dependencies)
	Almost there!
	Try a demo Quarto file
	Demo plot produced by Julia in Quarto

